

Rupert Goddard & Professor David Gilvear

University of Plymouth

Understanding gravel dynamics with a focus on the success of gravel augmentation as a restoration technique.

www.slido.com with #3406402 Wrt.o

UNDERSTANDING GRAVEL DYNAMICS WITH A FOCUS ON THE SUCCESS OF GRAVEL AUGMENTATION AS A RESTORATION TECHNIQUE David Gilvear¹, Peter Downs², <u>Rupert Goddard¹</u>, Richard Hartley¹, Matt Healey³, Shaun Lewin¹

²University of Portsmouth rupert.goddard@plymouth.ac.uk South West Water

Introduction: Dams and gravel

- Fragmentation
- Depletion of gravel beds
- Impact on salmonid spawning
- Gravel augmentation

Avon Dam

River Avon – Didworthy reach

Aim of the project

To monitor gravel movement following augmentation to guide future gravel introductions on the River Avon, Devon England and other impounded Dartmoor rivers

Introduction: Gravel augmentation

Augmentation sites, augmentation dates and tonnage

Site Code	Site name	2014 -15	2015- 16	2016- 17	2017- 18	2018- 19	2019- 20	Total (tonnes)
1	Top bridge	-	25	20	40	40	40	160
2	Riders Rings	-	6	3	-	-	-	9
3	Weir	-	30	20	40	40	40	170
4	Woolholes 1	-	15	20	-	-	-	35
5	Woolholes 2	-	5	20	-	-	-	25
6	Woolholes Bridge	-	3	14	30	30	30	107
7	Big Pool	-	10	8	10	10	-	38
8	Black Tor	-	35	15	10	10	20	90
9	Shipley Bridge	-	5	24	60	20	20	129
10	Badworthy	26	42	30	40	30	30	198
A	Below Woolhole Bridge	-	-	5	-	-	-	5
В	Zeal (Bala Brook)	-	-	7	20	40	40	107
С	Didworthy Bridge	-	-	14	50	-	-	64
	Total	26	186	200	300	220	220	1252

Past Week

Floods of 26th and 31st October and 2nd November 2019 (EA 15 minute data)

Past Week

Methods: Approach

- 1. To examine reach-scale gravel dynamics using RFID tagging of particles
- 2. To map and audit river-scale gravel habitat dynamics
- 3. To determine process-controls on timing on gravel dynamics via impact plates

Methods (1): RFID tagging

Reach	Date of introduction	Number of tagged particles
Woolholes	28/10/2014 and 06/11/14	149
	19/09/2016	200
	18/10/2018	200
Didworthy	28/10/2014 and 06/11/14	120
	08/10/2016	200
	18/10/2018	200

Methods (1): RFID detection

- PIT/RFID tag reader
- Range approx 0.45m from tagged particle
- Location using Trimble
 Geo 7X GPS and
 Flightwave[™] ranger

Methods (2): Fluvial Audits

Walk over surveys (Handheld Trimble GPS)

- Size of gravel deposits (Very Large-very small)
- Location (Left bank, Bed, Right bank)
- Above/below water line

Methods (2): Fluvial audits

Reach	Reach description	Distance from dam(m)	Reach Length (m)
Reach 1	Top bridge to weir	369-1610	1241
Reach 2	Weir to Woolholes Bridge	1611-2144	533
Reach 3	Woolholes Bridge to Big Pool	2145-2373	228
Reach 4	Big Pool to Shipley Bridge	2374-3483	1109
Reach 5	Zeal bridge, Bala Brook to Avon Confluence	N/A	182
Reach 6	Shipley Bridge to Didworthy	3484-4914	1430
Reach 7	Didworthy to start of Penstave Copse	4915-5797	882

Methods (3): Impact Plates

- 150 x 130 x 6 mm steel top plate mounted onto a paving slab
- Impact > 10 mm recorded.
- Record at 5 Hz (*i.e.*, 5 particles per second)
- Logging 64,000 pre-defined periods (maximum of 255 counts in each period)
- Set at 2.5 minute intervals.
 Downloading interval < 3.5 months.

Results: dispersal and fate Woolholes reach

		Distance in metres (change from previous surve			
Site survey	Number of Tags/recov ery rate	Minimum	Mean	Maximum	Notes
Woolholes June 2017	107 (30.6%)	0.7	34.3	156.1	
Woolholes February 2018	84 (24.0%)	4.9	60.3 (+26)	157.9 (1.8)	
Woolholes January 2019	199 (36.0%)	0.2	102.3 (+42)	359.7 (201.8)	
Woolholes June 2020	117 (21.3%)	2.9	158.3 (+56)	354.1 (-5.8)	
Didworthy June 2017	77 (23.4%)	4.9	60.4	157.9	
Didworthy February 2018	35 (10.6%)	6.03	26.9 (-32.9)	58.6	Survey curtailed due to snowfall
Didworthy January 2019	200 (37.8%)	5.38	141.2 (+114.7/+5 4.3)	416.0 (357.4/226 .1))	
Didworthy July 2020	108 (20.4%)	5.82	168.2 (27m)	457.8) (41.8)	

Northing

0

Results – RFID gravel dispersal

Results - Gravel deposit dispersal and fate

1

4

6

Bed Channel embayment Other Lee of Boulder Woody debris Island

Results: Particle transport

Didworthy – upstream site

Conclusions

- Gravel dynamics are a function of particle mobility mediated by high retention. Boulder bedded reaches and reaches with "embayments" have the highest retention. Stream power is secondary.
- Monitoring suggests gravel augmentations will be required to maintain the gravel habitat at current levels but the number of locations, frequency and volumes of gravel augmentation can be significantly reduced.
- The results suggest that augmentation on a 5-yearly timescale at 3 locations on the river would maintain gravel habitat close to what we now see.

• Since the start of the project in 2015 there has been an upward trend in both salmon and trout species in the upper catchment.

plymouth.ac.uk

rupert.goddard@plymouth.ac.uk